If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x^2)+40x+44=0
a = 3; b = 40; c = +44;
Δ = b2-4ac
Δ = 402-4·3·44
Δ = 1072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1072}=\sqrt{16*67}=\sqrt{16}*\sqrt{67}=4\sqrt{67}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{67}}{2*3}=\frac{-40-4\sqrt{67}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{67}}{2*3}=\frac{-40+4\sqrt{67}}{6} $
| 10-5b=-30 | | 2(2/3)x=3/4x | | 9v+9=61 | | 3/4x=2/2x+2/3x | | 4x+2x+x=175 | | a/2=6=-14 | | 4(3x+2)=-42 | | 4+12/3+2x=7 | | 8a-3a+2a=0 | | 3x+41/2+x-3/5=9-2x/6 | | 99+76*3497=x | | (-2x+3)(x-1)=0 | | 18*6/x+67=121 | | 2b+2b+420=10b | | X^3-3x^2-9+11=0 | | 3/4p=48 | | 2(5x+2)=3x+1 | | 5x+12=-3x-16 | | 5x-10=x+38 | | n+48=7n | | 12x1.5-(x+1.5)^2=11.25 | | 10^2x+4.10^x=21 | | 5x2-10x=840=0 | | 11 a − 12 = 4 a + 2 | | x2+110x+3025=0 | | -7k^2+12k+8=0 | | 23=-4x+27 | | 5/x=31/3 | | 2(3q+4)-5=15 | | 0.2(x+2)+0.05(10-x)=1.4 | | 3a=15/15 | | 2(x-17)=06 |